Cluster Results on Ion Emitter Operation #### Klaus Torkar Space Research Institute, Austrian Academy of Sciences, Graz, Austria Mats André (Swedish Institute of Space Physics, Uppsala Division / EFW), Andrew Fazakerley (MSSL, Holmbury St. Mary, United Kingdom / PEACE), Henri Rème (CESR, Toulouse / CIS), and the ASPOC Team: W. Riedler, G. Fremuth, H. Jeszenszky, F. Giner, G. Laky (IWF); C.P. Escoubet, M. Fehringer, R.J.L. Grard, R. Schmidt, H. Arends (ESTEC), B. Narheim, K. Svenes (FFI), A. Pedersen (Univ. Oslo), F. Rüdenauer (IAEA), W. Steiger (ARCS), E. Whipple (Univ. Washington), R.B. Torbert (UNH), R. Goldstein (SwRI) 5th SPINE Workshop, ESTEC, 16–17 September 2003 #### Contents - Instrument set-up - Principle of operation - Ion beam properties - Cluster operations summary - Effect on spacecraft potential - Comparison between spacecraft - Histograms of potential - Beam current spacecraft potential characteristics - Effect on PEACE electron measurements - Effect on CIS ion measurements - Effect on EFW electric field measurements - Conclusion ### Liquid Metal Ion Source - Liquid Indium (heated to ≈200 C) covers needle - Field emission of ion beam - Four emitters integrated in "module" ## Instrument ASPOC - Active Spacecraft Potential Control - Mass: 1.9 kg - Power: 2.1 ... 2.7 W - Lead: IWF Graz - Major partners: RSSD/ESA, ARC/Seibersdorf, FFI/Norway, UNH/USA ## Configuration #### Location of ASPOC and electron / ion sensors on spacecraft ## Ion Beam Properties - Energy width at 10 μA: ≈150 eV; low intensity, low energy tail down to ≈500 eV below nominal beam energy - Species: >90% single charged In+ Minor contributions of other charge states and clusters - Isotopic composition: 115 amu (95.7%), 113 amu (4.3%) | | 0.036 | | <u> </u> | — Curve | · Curve Fit 0.49 μN (5 μA, 4.7 kV) | | | | |--------------|-------|-----|-----------------|---------------|------------------------------------|----|----|--| | Current [µA] | 0.03 | | | | | | | | | | 0.024 | | | | | | | | | | 0.018 | | | | | | | | | ਹ
, | 0.012 | | | | | | | | | | 0.006 | | | | | | | | | | ٥٢ | | - 10 | | | | | | | | -30 | -20 | -10
A | 0
Ingle [d | 10
eg] | 20 | 30 | | Typical beam profile **Spacecraft** | MU (4.3%) | <u>-</u> | | | | | | |-----------------------|----------|------------------|----------|--|--|--| | 114 (1.570) | Salsa | Samba | Tango | | | | | yp. Beam Energy [kV] | 5.4, 7.4 | 7.7 | 5.5, 6.8 | | | | | yp. Beam Current [μΑ] | 10 | 12.2, 13.7, 14.5 | 10, 14.5 | | | | ## **Development of Beam Energy** ## Cluster operations summary ## Table shows status of 21 August 2003 | | Spacecraft | | | | |--|------------|-------|-------|-------| | | Salsa | Samba | Tango | Total | | Total operation time (hours) | 234 | 2543 | 2115 | 4892 | | Maximum total operation time of a single emitter (hours) | | 2525 | 1468 | | | Number of operations | 107 | 450 | 373 | 930 | | Average duration of single operation (hours) | | 5.9 | 5.8 | 5.5 | | Maximum duration of single operation (hours) | 7.8 | 36.4 | 35.8 | | ## Operational status - Operations on all even-numbered orbits - Typical sequence with Cluster apogee in magnetotail: - 7 hours around outbound cusp crossing - 7 hours centred at neutral sheet - 7 hours around inbound auroral zone crossing - Ion current: between 10 and 15 µA ## Example of ASPOC ion beam turn-on ## ASPOC Operations on Cluster 3 in 2001; Measured Potential Before and After MAP - Lines show operation times - Spacecraft potential measured by double probes (EFW) shown as colored triangles Spacecraft Potential on Cluster 2,3,4 in Comparison with Cluster 1 During Active Periods of ASPOC on Cluster 2,3,4 2001, EFW Potential, ASPOC ON, SC1 & SC2 ## Comparison of Spacecraft Potential Before and After Beam Turn-on ## Example of current-voltage characteristics, Spacecraft potential (EFW), Cluster 2 #### **ASPOC Operations on 25 September 2000 10:35 - 16:42** # Histograms of Spacecraft Potential - Prime Parameter data of s/c potential measured by EFW - Covering year 2001 - Data from the same s/c for different times ## Comparison of Spacecraft Potential Between Cluster 1 and 2, ASPOC OFF ## Comparison of Spacecraft Potential Between C1 and 2, ASPOC ON for C2 ## Effect on PEACE electron measurements - The following pages show the effect of ion beam operation on PEACE electron measurements, in various regions of the magnetosphere (polar cap, magnetotail, highaltitude cusp) - Electron measurements not only benefit from the improvement of the data, but also from the increased lifetime of micro-channel plates, when photo-electron count rates stay low #### Magnetotail 10 Sept. 2001 Sep. dist. 2000 km Plasma sheet: $ne=0.1-0.2 \text{ cm}^{-3}$ Vs/c=20V Tail lobe: ne=0.01 cm⁻³ Vs/c=45V Vaspoc=9V AE<50nT, Kp=1 23 MLT, close to apogee, near XY-plane Svenes et al., 2003 #### Effect on CIS ion measurements - Changes of the spacecraft potential between <10 V and >20 V clearly influence the measurements of cold ions by the Cluster Ion Spectrometer (CIS) - Effects can be seen in H+, He+, O+ and total ion density data. - This is demonstrated by examples on the following pages # ASPOC SUPPORTS DETECTION OF LOW-ENERGY He+ AND He+ IONS IN LOW DENSITY REGIONS The Cluster Ion Spectrometer (CIS) measures significantly higher flux of low-energy H⁺ and He⁺ in low density regions when the ASPOC is active The switch-off of ASPOC is clearly visible On S/C3 CIS stops to observe low-energy H⁺ and He⁺ after 15:19:57. Effect is particularly clear on the He+ population (20 to 70 eV) on S/C4 from ≈16:40, and which was never observed on the other spacecraft on which ASPOC was off during that interval ## Cold Ion Beam SC 3; 14 Oct 2001 Duskward/tailward streaming cold H⁺ appears only after ASPOC turn-on at 15:58 (with 12 µA) ## ASPOC Support for EFW Electric Field Measurements #### Conclusions – 1 - While ASPOC is emitting 10 µA ion current, the spacecraft potential does not exceed 8 to 9 V - With 12 to 15 μ A => 6 to 7 V - Histograms peak at ≈7 V when ASPOC is active - Significant improvement of low energy electron measurements, without compromising wave and electric field measurements - At times when the ion beam turns on while the plasma environment remains constant one can nicely study the effect of spacecraft potential control - The reduction of photo-electron counts in the measurements and the improvement of the effective energy resolution is most obvious in any low density environment #### Conclusions – 2 - In spite of the low ambient density the ion beam does not appear to have a measurable effect on the incoming electrons at the present state of analysis; further work is to be done, including simulation - Changes of the spacecraft potential between <10 V and >20 V clearly influence the measurements of cold ions; effects can be seen in H⁺, He⁺, O⁺ and total ion density data, and on both spacecraft 3 and 4 ⇒ observations are not specific to a single instrument or spacecraft. - Electric field measurements by double probes may benefit in certain environments